\(\int (a+a \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^{\frac {7}{2}}(c+d x) \, dx\) [1267]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 41, antiderivative size = 179 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=-\frac {2 a (3 A+5 (B+C)) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a (A+B+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a (3 A+5 (B+C)) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a (A+B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a A \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \]

[Out]

2/3*a*(A+B)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/5*a*A*sec(d*x+c)^(5/2)*sin(d*x+c)/d+2/5*a*(3*A+5*B+5*C)*sin(d*x+c)
*sec(d*x+c)^(1/2)/d-2/5*a*(3*A+5*B+5*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+
1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/3*a*(A+B+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1
/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4306, 3110, 3100, 2827, 2716, 2719, 2720} \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {2 a (3 A+5 (B+C)) \sin (c+d x) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a (A+B+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {2 a (3 A+5 (B+C)) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a (A+B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 a A \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d} \]

[In]

Int[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2),x]

[Out]

(-2*a*(3*A + 5*(B + C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*a*(A + B +
 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*a*(3*A + 5*(B + C))*Sqrt[Sec
[c + d*x]]*Sin[c + d*x])/(5*d) + (2*a*(A + B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*a*A*Sec[c + d*x]^(5/
2)*Sin[c + d*x])/(5*d)

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3110

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Dist[1/(b^2*(m + 1)*(a^2 - b^2)
), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d +
 b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(m
 + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 a A \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac {1}{5} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {5}{2} a (A+B)-\frac {1}{2} a (3 A+5 (B+C)) \cos (c+d x)-\frac {5}{2} a C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a (A+B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a A \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac {1}{15} \left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {3}{4} a (3 A+5 (B+C))-\frac {5}{4} a (A+B+3 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a (A+B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a A \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {1}{3} \left (a (A+B+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\frac {1}{5} \left (a (3 A+5 (B+C)) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a (A+B+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a (3 A+5 (B+C)) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a (A+B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a A \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d}-\frac {1}{5} \left (a (3 A+5 (B+C)) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 a (3 A+5 (B+C)) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a (A+B+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a (3 A+5 (B+C)) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a (A+B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac {2 a A \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.85 (sec) , antiderivative size = 147, normalized size of antiderivative = 0.82 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {a \sqrt {\cos (c+d x)} (1+\cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (-3 (3 A+5 (B+C)) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 (A+B+3 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {(15 (A+B+C)+10 (A+B) \cos (c+d x)+3 (3 A+5 (B+C)) \cos (2 (c+d x))) \sin (c+d x)}{2 \cos ^{\frac {5}{2}}(c+d x)}\right )}{15 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^(7/2),x]

[Out]

(a*Sqrt[Cos[c + d*x]]*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*Sqrt[Sec[c + d*x]]*(-3*(3*A + 5*(B + C))*EllipticE
[(c + d*x)/2, 2] + 5*(A + B + 3*C)*EllipticF[(c + d*x)/2, 2] + ((15*(A + B + C) + 10*(A + B)*Cos[c + d*x] + 3*
(3*A + 5*(B + C))*Cos[2*(c + d*x)])*Sin[c + d*x])/(2*Cos[c + d*x]^(5/2))))/(15*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(711\) vs. \(2(209)=418\).

Time = 90.76 (sec) , antiderivative size = 712, normalized size of antiderivative = 3.98

method result size
default \(\text {Expression too large to display}\) \(712\)
parts \(\text {Expression too large to display}\) \(902\)

[In]

int((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-4*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(1/2*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2
*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/
2))+1/10*A/sin(1/2*d*x+1/2*c)^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*
cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip
ticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(2*sin(1/2
*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2
+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell
ipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(1/2*A+1/2*B)*(-1/6*c
os(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+(1/2*C+1/2*B)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(-1+2*cos(1/
2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.31 \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\frac {-5 i \, \sqrt {2} {\left (A + B + 3 \, C\right )} a \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (A + B + 3 \, C\right )} a \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (3 \, A + 5 \, B + 5 \, C\right )} a \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (3 \, A + 5 \, B + 5 \, C\right )} a \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (3 \, {\left (3 \, A + 5 \, B + 5 \, C\right )} a \cos \left (d x + c\right )^{2} + 5 \, {\left (A + B\right )} a \cos \left (d x + c\right ) + 3 \, A a\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

1/15*(-5*I*sqrt(2)*(A + B + 3*C)*a*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) +
5*I*sqrt(2)*(A + B + 3*C)*a*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqr
t(2)*(3*A + 5*B + 5*C)*a*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin
(d*x + c))) + 3*I*sqrt(2)*(3*A + 5*B + 5*C)*a*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0,
 cos(d*x + c) - I*sin(d*x + c))) + 2*(3*(3*A + 5*B + 5*C)*a*cos(d*x + c)^2 + 5*(A + B)*a*cos(d*x + c) + 3*A*a)
*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2)

Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sec(d*x + c)^(7/2), x)

Giac [F]

\[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int { {\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {7}{2}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)*sec(d*x + c)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^{\frac {7}{2}}(c+d x) \, dx=\int {\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}\,\left (a+a\,\cos \left (c+d\,x\right )\right )\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A\right ) \,d x \]

[In]

int((1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)^2),x)

[Out]

int((1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d*x)^2), x)